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A quantitative measure of acoustic similarity is crucial to any study comparing vocalizations of
different species, social groups, or individuals. The goal of this study was to develop a method of
extracting frequency contours from recordings of pulsed vocalizations and to test a nonlinear index
of acoustic similarity based on the error of an artificial neural network at classifying them. Since the
performance of neural networks depends on the amount of consistent variation in the training data,
this technique can be used to assess such variation from samples of acoustic signals. The frequency
contour extraction and the neural network index were tested on samples of one call type shared by
nine social groups of killer whales. For comparison, call similarity was judged by three human
subjects in pairwise classification tasks. The results showed a significant correlation between the
neural network index and the similarity ratings by the subjects. Both measures of acoustic similarity
were significantly correlated with the groups’ association patterns, indicating that both methods of
quantifying acoustic similarity are biologically meaningful. An index based on neural network
analysis therefore represents an objective and repeatable means of measuring acoustic similarity,
and allows comparison of results across studies, species, and time. ©1999 Acoustical Society of
America.@S0001-4966~99!01004-8#

PACS numbers: 43.80.Ka, 43.80.Lb, 43.80.Jz@FD#
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INTRODUCTION

A widespread problem in the study of animal and hum
vocal communication lies in describing and quantifying t
similarity of acoustic signals. A quantitative measure
acoustic similarity is crucial to any study comparing the v
calizations of different species, social groups, or individua
Current approaches to this problem fall into two categor
Statistical measuresof acoustic similarity use univariate o
multivariate statistics on measures extracted from acou
signals~e.g., Bailey, 1978; Symmeset al., 1979; Clarket al.,
1987; Buck and Tyack, 1993; for overviews see Martinda
1980, and Williams and Slater, 1991!. Perceptual measure
quantify acoustic similarity through ratings by human su
jects~e.g., Tyack, 1986; Sayighet al., 1990!, or by the abil-
ity of human or animal subjects to discriminate betwe
classes of signals~e.g., Miller and Nicely, 1955; Loesch
et al., 1992!.

Statistical measures of acoustic similarity have the
vantage of being objective and repeatable~Martindale, 1980;
Clark et al., 1987!, making it possible to compare the resu
from different studies. However, they may not always be
most meaningful, since they only assess the physical pro
ties of the signals and give no information on how they
perceived~see Horn and Falls, 1996!. Perceptual measure
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although often biologically meaningful, have the problem
observer bias. Whereas ratings of similarity by the same s
ject are probably comparable, ratings made by different s
jects are generally not. In addition, obtaining ratings by h
man subjects or trained animals becomes a logistic challe
in experiments where the acoustic similarity of multip
samples needs to be assessed in pairwise comparison
where sample sizes are large.

In this paper, we introduce the use of an artificial neu
network to measure the similarity of discrete calls of kill
whales~Orcinus orca!. Artificial neural networks were de
veloped by modeling biological systems of information pr
cessing~for overviews, see Dasgupta, 1991; Hinton, 199!.
Due to their ability to classify unknown data based on info
mation obtained from a known training set, neural netwo
have successfully been used in the automated classifica
of acoustic signals~e.g., Neumannet al., 1992; Ramani
et al., 1993!, including killer whale calls~Spong et al.,
1993!. Since the performance of a neural network depe
on the amount of consistent variation between the signal
terns in the training set, we demonstrate that the discrim
tion error of a neural network can be used to quantify
similarity of signals. Its bio-mimetic nature makes neu
network analysis a promising candidate for a measure
similarity which assesses acoustic variation in a biologi
24994)/2499/9/$15.00 © 1999 Acoustical Society of America
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meaningful while being objective and repeatable.
Ford ~1984, 1989, 1991! showed that different killer

whale communities use distinctively different vocal signa
Within the Northern Resident Community of British Colum
bia, stable kin groups, called pods, have unique vocal re
toires of 7–17 discrete call types. Related pods often
structurally distinct versions of the same call types. With
pods, matrilineal groups, called subpods, again have t
own versions of shared call types. Finally, individuals like
have unique ‘‘voices’’ due to variation in their sound
producing structures. The vocal communication of kil
whales exhibits variation on a variety of levels and provid
a challenging field in which to test methods of measur
acoustic similarity.

Many studies have used frequency contours to desc
vocalizations~e.g., Bailey, 1978; Sayighet al., 1990; Buck
and Tyack, 1993; McCowan, 1995!. For tonal signals, a fre
quency contour gives changes in the fundamental freque
of a vocalization over time. For pulsed signals, such as
discrete calls of killer whales~Schevill and Watkins, 1966
Ford, 1989!, the contour describes changes in the pulse r
etition rate~pulse-rate contour!. The similarity of samples of
frequency contours can be assessed using statistical~Bailey,
1978; Buck and Tyack, 1993; McCowan, 1995! or percep-
tual ~Sayigh et al., 1990! measures. Using frequency co
tours to describe vocalizations has the advantage that
signal is analyzed as a unit rather than broken down
disjunct measurements. In addition, irrelevant informati
such as background noise or artifacts introduced by the
cording apparatus, is eliminated from subsequent analy
This is especially beneficial in the present study, which co
pares calls from recordings made in the field with a vari
of recording systems.

So far, most automated procedures for extracting
quency contours from spectrograms have been develope
tonal signals~such as bird vocalizations or dolphin whistle!
and for recordings obtained under controlled circumstan
from captive or temporarily isolated animals~e.g., Buck and
Tyack, 1993!. In this paper we describe a method to det
mine the pulse repetition rate from spectrograms of pul
calls. This method of extracting pulse-rate contours is rob
to levels of background noise typical of field recordings. W
introduce an index of acoustic similarity based on the per
mance of a neural network at classifying unknown conto
using information obtained from a known training set. W
test the contour extraction algorithm and the neural netw
index on calls of nine matrilineal groups of killer whales. F
comparison, we measure the similarity of the same calls
ing the classification error of three human subjects. To inv
tigate whether both measures of acoustic similarity are b
logically meaningful, we compare them to the associat
patterns of the nine groups.

I. METHODS

A. Extraction of pulse-rate contours: The sidewinder
algorithm

The discrete calls of killer whales are pulsed signals
which a tone~of a certaintonal frequency! is not emitted
2500 J. Acoust. Soc. Am., Vol. 105, No. 4, April 1999
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continuously but in pulses~given by the pulse-repetition
rate; Schevill and Watkins, 1966; Watkins, 1967!. Unlike in
the tonal signals of many birds or other delphinids, the hig
est amount of energy is therefore not always contained in
first, second, or third harmonic~Watkins, 1967!. The pulsed
nature of these calls and the fact that the recordings use
this study were made in the field and often contained h
levels of background noise meant that extraction algorith
from the literature~such as used by Buck and Tyack, 199!
proved not to be satisfactory.

For the extraction of pulse-rate contours, suitable ca
were digitized at a sampling rate of 22 050 Hz from casse
tapes, including at least 100 ms of background noise be
the onset of the call. Spectrograms were generated by
Fourier transform~FFT! using the Canary 1.2.1 sound anal
sis software~Cornell Laboratory of Ornithology! with a filter
bandwidth of 88 Hz, and an FFT size and frame length
1024 points. Overlap between frames was 87.5%, an
Hamming window function was used for normalizatio
These parameters give a frequency resolution of 21.53
and a temporal resolution of 5.81 ms. Contours were
tracted usingMATLAB 4.2 ~The MathWorks, Inc.! for Macin-
tosh with the signal processing toolbox.

The algorithm used in this study assumes that the be
ning and the end of the call can be determined visually fr
the spectrogram. In order to reduce background noise lev
an average noise spectrum was computed from the part o
spectrogram before the onset of the call, and subtracted f
all time bins. In a spectrogram of a pulsed vocalization,
pulse repetition rate is given by the spacing between
quency bands~Watkins, 1967!. To find the pulse-repetition
rate at each point in time, the autocovariance seque
~mean-removed autocorrelation sequence! R was first com-
puted for each individual power spectrumy of the spectro-
gram using the formula:

Ry~n!5 (
m50

m5N

@y~n1m!2 ȳ#@y~n!2 ȳ#, ~1!

wheren is the frequency bin number,m is the offset of the
spectrum in frequency bins,ȳ is the average sound pressu
of the spectrum, andN is the number of frequency bins in th
spectrum. To save computing time, the sequence was
calculated fromm50 to m5N, since the segment fromm
52N to m50 is an exact mirror image and yields no add
tional information. The frequencies of any sidebands in
acoustic signal are given by a simple linear relationship, a
therefore the autocovariance sequence will show a peak
ery timem equals a multiple of the frequency spacing of t
bands~i.e., of the pulse-repetition rate; Watkins, 1967! and
adjacent bands overlap. Because the power spectrum o
background noise tends to decrease with increasing
quency, and adjacent frequency bands generally have sim
energy content, the second highest maximum in the auto
variance sequence~after m50! usually corresponds to th
frequency bin containing the pulse-repetition rate. Som
times this maximum represents the second, and in some
cases the third, harmonic. A simple heuristic algorithm d
scribed by Buck and Tyack~1993!, which checked for local
2500Deecke et al.: Neural network to compare killer whale dialects
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maxima at 1/2 and 1/3 of the offset of the second high
maximum, could account for this.

Figure 1 shows a spectrogram of an N4 call and a pu
rate contour extracted from it. Figure 2 gives the power sp
trum at t51091 ms~A! and its covariance sequence~B! for
the same call. For subsequent analysis, the pulse-repe
rate was determined at 100 equally spaced points throug
the call and presented to the neural network as a vecto
100 numbers. Thus calls were essentially standardized
time; however, call length was entered as a 101 st num

FIG. 1. ~A! Spectrogram of an N4 call with a filter bandwidth of 88 Hz. Th
white line att51091 ms shows the position of the power spectrum in Fig
~B! Pulse-rate contour extracted from the spectrogram.

FIG. 2. ~A! Power spectrum of the terminal component of an N4 call at
51091 ms~see Fig. 1!. Filter bandwidth is 88 Hz and frequency resolutio
is 21.53 Hz per frequency bin.~B! Autocovariance sequence of the pow
spectrum. The arrows indicate the frequency bin containing the pu
repetition rate.
2501 J. Acoust. Soc. Am., Vol. 105, No. 4, April 1999
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into the analysis to allow discrimination of calls which di
fered consistently in length, but not in structure.

B. Analysis of acoustic variation in the N4 call

To test the performance of the neural network index
biological data, we used recordings of nine matriline
groups, or subpods, of killer whales. Matrilineal groups co
sisted of between two and seven individuals, and belong
A-subclan of the Northern Resident Community~Ford,
1991! which inhabits the waters of British Columbia
Canada. The recordings analyzed in this study were mad
the fjords and straits of the southern coast of British Colu
bia in weakly stratified or unstratified waters of depths of
to 400 m and often contained low to moderate levels
shipping noise. Recordings were contributed by a numbe
researchers using a variety of recording systems. All syst
had a flat frequency response from 0.1 to 7 kHz, although
some systems the range of the flat response extended u
20 kHz.

All members of the Northern Resident Community c
be identified consistently from natural markings~Bigg et al.,
1990; Fordet al., 1994!. The analysis was restricted to re
cordings which could be attributed to a certain matriline
group because was the only group within recording ran
and its identity was confirmed visually or photographical
We chose the N4 call~Ford, 1989, 1991; see Fig. 3! for this
study because it is shared by all nine groups and it is on
the most frequently used call types in their repertoire. Str
turally, the N4 calls of A08, A09, A23, A25, and A36 a
have relatively low peak pulse repetition rates, and a p
nounced terminal component at the end of the call~see Fig.
3!. The versions of N4 made by A12 and A30 subpods u
ally lack the terminal component and have a relatively hig
peak pulse repetition rate. Finally the N4 calls of A11 a
A24 subpods~A4 pod of Ford, 1991! tend to be longer than
those of any other matrilineal group and generally end in
upsweep.

N4 calls with adequate signal-to-noise ratios were id
tified acoustically and visually from recordings, and we
digitized using the Canary 1.2.1 sound analysis softwa
Spectrograms were computed and pulse-rate contours
tracted with the sidewinder algorithm. Since the performan
of a neural network is highly dependent on the number
examples for each signal pattern in the training set, sam
size for all matrilineal groups was standardized to 24,
size of the smallest sample. For each group we included c
from as many independent recording sessions as possib
present the neural network and the human subjects with c
from a wide range of behavioral contexts, which are kno
to affect call structure~Ford, 1989!. No less than three inde
pendent recording sessions were used for any one matrili
group.

Association patterns of the different matrilineal grou
were analyzed by generating an association matrix giving
half-weight index of association~Ginsberg and Young, 1992!
for each pair of matrilineal groups. This index gives t
number of observations of two groups traveling together a
proportion of half the total number of observations for t
two groups. The association data came from a sightings

.

e-
2501Deecke et al.: Neural network to compare killer whale dialects



FIG. 3. Examples of spectrograms of N4 calls from the nine matrilineal groups of A-subclan.
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tabase for the Northern Resident Community spanning
years 1990–1995. The total number of sightings of one
more A-subclan matrilineal group was 757, while numb
of sightings of any one matrilineal group ranged betwe
147 ~A25 subpod! and 415~A30 subpod!.

C. The neural network index of acoustic similarity

Neural network analysis was done with the neural n
work toolbox of MATLAB 4.2 for the Macintosh~The Math-
Works, Inc.!. We used a standard back-propagation netw
~e.g., Rumelhartet al., 1986! with momentum and an adap
2502 J. Acoust. Soc. Am., Vol. 105, No. 4, April 1999
e
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tive learning rate~Vogl et al., 1988!. Back-propagation net-
works can be trained to classify unknown patterns by ‘‘lea
ing’’ to associate certain known input patterns with certa
outputs. In our case inputs consisted of pulse-rate conto
plus call length from two social groups, and the expec
outputs were the matrices@0 1# and @1 0#, depending on
which group the contour came from. After training, the pe
formance of a neural network can be tested by presentin
with data not used in training, and determining how clos
the observed output matches the expected one.

To determine the network’s performance during t
training process, the training algorithm computes the su
2502Deecke et al.: Neural network to compare killer whale dialects
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the
square error of observed against expected output. We us
modified version of this parameter, thediscrimination error,
to determine network performance when testing a netw
with unknown contours. The discrimination error is calc
lated by subtracting the observed output from the expec
output ~@0 1# or @1 0#! and taking the mean of the absolu
differences. The average of the discrimination error of
networks trained on one comparison was chosen over
proportion of misclassifications because the discriminat
error not only yields information on whether a classificati
is correct, but also gives a relative measure of the quality
discrimination. For example, even an untrained netw
might easily generate@0.49 0.51# for an expected output o
@0 1#. Since in both cases the second output exceeds the
one, the classification is considered correct and the ne
network has a classification error of 0, although the class
cation was hardly better than random. The discriminat
error of 0.49 much better reflects the poor quality of th
classification.

The optimal neural network architecture for the d
crimination tasks was determined in a network design
periment which consisted of training neural networks on
range of comparisons and varying the number of neuron
the hidden layer, as well as the length of training. For
comparisons, discrimination did not increase detecta
when using more than 20 neurons in the hidden layer
when training for more than 5000 iterations, so that th
parameters were used in all subsequent analyses. Neura
works were initialized with random weights, and a sm
number of neural networks did not improve in performan
from the initialized state. Since this failure to train resu
from the configuration of weights at initialization rather th
from a lack of consistent variation in the training set, su
networks were eliminated from the analysis by setting a
terion of a 20% decrease of the sum-square error during
first 150 iterations.

To arrive at an acoustic similarity matrix for the N4 ca
of the nine groups, we trained and tested neural network
all 36 possible pairwise comparisons. We intended to train
many independent neural networks as possible on each c
parison to eliminate the stochastic component of neural
work analysis. To do this, one contour was excluded fr
the training set, a neural network was trained on the rem
ing 47 contours, the neural network was tested using
excluded contour and the discrimination error was de
mined. The test contour was then added back to the train
set, another one was removed, and this procedure wa
peated until each contour had served as the test contour
tested each network with only a single contour in order
have as many contours for training as possible. Netwo
trained with fewer contours and tested with more gave c
sistently higher discrimination errors, probably due to ov
training ~Rumelhartet al., 1986!. The neural network index
of acoustic similarityfor each pairwise comparison is th
average of the discrimination errors of all 48 neural netwo
trained this way.
2503 J. Acoust. Soc. Am., Vol. 105, No. 4, April 1999
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D. Acoustic similarity ratings by human subjects

The same nine samples of 24 calls each were use
determine the classification errors of human subjects in p
wise computer-based discrimination tasks. Three female s
jects, none of whom had any previous knowledge of kil
whale vocal communication, were presented with the d
crimination tasks. Subject A was 20 years old and had
musical background. Subject B was 22 years old and
played the flute for 2 years, and subject C was 20 years
and had played the piano for 13 years.

Since human subjects cannot be trained more than o
on the same problem without seeing an increase in per
mance, we used a somewhat modified training and tes
protocol for this part of the analysis. In each discriminati
task, the subject was first presented with a training set o
calls belonging to two categories~A or B! according to the
group they came from. The subject could listen to the ca
and view their spectrograms, and was then asked to ass
test set of 32 unfamiliar calls to the appropriate catego
The rating of acoustic similaritygives the proportion of mis-
classifications among these 32 calls. During the testing,
subject was allowed to return to the training set, but in or
to cause her to generalize, was asked not to do so more
three times for each discrimination task. Following the e
periments, the subjects completed a questionnaire as
whether they classified the calls primarily using acoustic
visual cues.

For visual comparison, average linkage dendrogra
were generated from the four acoustic similarity matric
~one neural network index and three human subject ratin!
as well as from the association matrix. Average linkage i
hierarchical tree-building algorithm and will group subpo
with high indices of acoustic similarity or association in
common clusters in a dendrogram~see Johnson, 1967!. The
acoustic similarity matrices and the association matrix w
compared statistically by generating the matrix correlat
coefficient for all possible comparisons. A Mantel test w
used to test for significance.

II. RESULTS

The sidewinder algorithm proved effective at extracti
pulse-rate contours from recordings obtained under a var
of recording conditions. Contours could be obtained ev
from recordings with high levels of ambient noise, if the c
was clear and the energy in two or more frequency ba
exceeded the background noise level. Only recordings c
taining boat noise with harmonic content, and recordin
with a great amount of acoustic reverberation or strong e
oes, caused problems in the contour extraction.

The values for the neural network index of acous
similarity for the pairwise comparisons of N4 calls are giv
in Table I. The neural network could best discriminate b
tween the N4 calls of A23 and A24 subpods~neural network
index: 0.01!. A09 subpod and A25 subpods gave the poor
discrimination ~neural network index: 0.48!. The average
value for the neural network index for all discriminatio
tasks was 0.15. The neural network index grouped the n
matrilineal groups into three major clusters according to
2503Deecke et al.: Neural network to compare killer whale dialects
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similarity of their N4 calls. These are A08–A09–A23–A25
A36, A12–A30, and A11–A24~Fig. 4!. These clusters are
consistent with structural differences in the calls shown
Fig. 3.

Table II gives the ratings of acoustic similarity~propor-
tion of misclassifications! for the 3 subjects and the 36 cla
sification tasks. The table shows that subjects B and C c
sified all calls correctly in at least one comparison. T
highest proportion of misclassification was higher than r
dom ~0.63, A08 vs A09 by subject C!. The average propor
tion of misclassification for all discrimination tasks was 0.2
0.18, and 0.15 for subjects A, B, and C, respectively, an

FIG. 4. Average linkage dendrogram giving acoustic similarity of the
call of the nine matrilineal groups based on the neural network index~gen-
erated from Table I!. The position of the vertical lines linking groups o
clusters of groups with respect to the scale bar above indicates the simi
of their N4 call based on the neural network index. Comparisons of N4 c
from groups which are linked on the left-hand side of the graph gave hig
average discrimination errors~suggesting higher similarity! than those
linked on the right-hand side.

TABLE I. Acoustic similarity matrix for the N4 call of the nine matrilinea
groups based on the neural network index of acoustic similarity. The va
give the neural network performance~average discrimination error! for each
pairwise comparison.

A09 0.34

A11 0.09 0.04

A12 0.05 0.03 0.08

A23 0.18 0.19 0.04 0.04

A24 0.10 0.03 0.29 0.08 0.01

A25 0.43 0.48 0.04 0.05 0.23 0.03

A30 0.14 0.06 0.07 0.37 0.09 0.10 0.06

A36 0.27 0.40 0.07 0.06 0.19 0.06 0.37 0.10

A08 A09 A11 A12 A23 A24 A25 A30
2504 J. Acoust. Soc. Am., Vol. 105, No. 4, April 1999
n
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sign test showed that subject A made significantly more m
classification than the other two subjects (p,0.001). The
proportions of misclassification of the three subjects for a
one comparison differed on average by 0.11, and these
ferences ranged from 0 to 0.31. Subjects A and C said
they used mainly acoustic and some visual cues to do
discrimination, subject B said she relied mainly on the sp
trogram, with some acoustic cues. Figure 5 shows that
three subjects grouped the calls of the nine matrilin
groups into three major clusters which correspond to
clusters generated by the neural network index~Fig. 4!.
However, the results from individual subjects differ in th
relationship of matrilineal groups within the three clusters,
well as in the positions of the clusters with respect to ea
other.

The association matrix for the nine matrilineal groups
given in Table III. Association indices range from 0.14 f
A09 and A11 subpod to 0.95 for A11 and A24 subpod. T
average linkage dendrogram~Fig. 6! shows that their asso
ciation patterns group the nine matrilineal groups into
same three clusters as the acoustic analyses, with the d
ence that the A36 subpod associates more often with A
while being acoustically more similar to A08–A09–A23
A25.

Table IV gives the correlation matrix of the ratings
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er

es
TABLE II. Acoustic similarity matrix for the N4 call of the nine matrilinea
groups generated by three human subjects. The values give the sub
performance~proportion of misclassifications! for each pairwise compari-
son.

Subject

A 0.44
A09 B 0.25

C 0.63

A 0.13 0.22
A11 B 0.25 0.06

C 0.16 0.03

A 0.16 0.06 0.06
A12 B 0.09 0.09 0.09

C 0.06 0.09 0.03

A 0.50 0.25 0.03 0.25
A23 B 0.19 0.47 0.03 0.09

C 0.19 0.53 0.00 0.03

A 0.25 0.28 0.44 0.28 0.03
A24 B 0.16 0.06 0.38 0.22 0.03

C 0.19 0.06 0.28 0.00 0.03

A 0.44 0.50 0.03 0.22 0.41 0.16
A25 B 0.44 0.50 0.13 0.09 0.38 0.03

C 0.25 0.34 0.13 0.00 0.38 0.00

A 0.13 0.13 0.22 0.31 0.09 0.38 0.06
A30 B 0.09 0.13 0.09 0.38 0.00 0.03 0.06

C 0.06 0.13 0.00 0.41 0.00 0.00 0.00

A 0.34 0.25 0.22 0.34 0.44 0.22 0.50 0.3
A36 B 0.09 0.28 0.16 0.16 0.16 0.13 0.31 0.3

C 0.22 0.19 0.13 0.13 0.28 0.06 0.25 0.2

A08 A09 A11 A12 A23 A24 A25 A30
2504Deecke et al.: Neural network to compare killer whale dialects
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acoustic similarity by the three subjects, by the neural n
work, as well as of the association indices. All correlatio
are significant withp,0.001 ~Mantel’s test!. Two correla-
tion coefficients comparing ratings of different subjec
~subjects A and B; subjects A and C! are lower than the
correlation coefficients comparing human subject ratings
the neural network indices. All measures of acoustic simi

FIG. 5. Average linkage dendrogram giving acoustic similarity of the
call of the nine matrilineal groups based on the classification errors of
three subjects~generated from Table II!. Comparisons of N4 calls from
groups which are linked on the left-hand side of the graph gave hig
classification errors~suggesting higher similarity! than those linked on the
right-hand side

TABLE III. Association matrix for the nine matrilineal groups. The valu
give the half-weight index of association.

A09 0.73

A11 0.42 0.24

A12 0.51 0.40 0.41

A23 0.77 0.69 0.33 0.47

A24 0.42 0.25 0.97 0.41 0.32

A25 0.69 0.61 0.27 0.37 0.78 0.26

A30 0.33 0.25 0.33 0.54 0.35 0.33 0.27

A36 0.40 0.38 0.34 0.52 0.39 0.33 0.27 0.37

A08 A09 A11 A12 A23 A24 A25 A30
2505 J. Acoust. Soc. Am., Vol. 105, No. 4, April 1999
t-
s

d
r-

ity gave significant correlations with the groups’ associat
indices.

III. DISCUSSION

The contour extraction algorithm based on autocova
ance in the frequency domain proved good at extract
pulse-rate contours even from recordings with poor sign
to-noise ratios. Unless the noise itself had harmonic cont
it was canceled out in the autocovariance sequence, whe
the harmonic signals were amplified. We suggest that pu
rate contours are an effective way to describe pulsed vo
izations and believe that this algorithm would be useful
extracting contours from noisy recordings of the pulsed c
of a wide variety of species.

The shortcomings of this algorithm are that it cannot
applied to broadband or pure-tone signals, and that comp
to alternative algorithms, it is computationally expensiv
Mixed signals, however, can still be analyzed by switchi
to another algorithm~e.g., that of Buck and Tyack, 1993! if
the autocovariance sequence fails to detect harmonic con
Recent developments in computer hardware are likely to
ther reduce computing time, making real-time extraction
pulse-rate contours a possibility.

The advantage of analyses of acoustic similarity ba
on frequency contours over those based on isolated mea
ments of the spectrogram lies in the fact that analysis
frequency contours requires no, or very little, prior know
edge of where to expect the differences in the sign
~Bailey, 1978!. Subtle and very localized differences b
tween two signal patterns are easily missed in conventio
analyses by taking measurements of a limited number
structural variables. Unlike discrimination and classificati
analyses of bioacoustic signals where the input is the wa
form ~e.g., Neumannet al., in press!, or the spectrogram~e.g.

e

er

FIG. 6. Average linkage dendrogram giving association patterns of the
matrilineal groups based on the half-weight index of association~generated
from Table III!. Groups which are linked on the left-hand side of the grap
spend more time traveling together than those linked on the right-hand
2505Deecke et al.: Neural network to compare killer whale dialects
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TABLE IV. Correlation matrix giving matrix correlation coefficients for the ratings of acoustic similarity by
human subjects, the neural network index, and the association indices of the nine matrilineal grou
correlations are significant withp,0.001~Mantel test!.

Similarity ratings
Subject A 1
Subject B 0.63 1
Subject C 0.60 0.79 1

Neural network index 0.69 0.78 0.71 1

Index of association 0.57 0.67 0.66 0.54 1

Subject A Subject B Subject C Neural Index of
network association

Similarity ratings index
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Sponget al., 1993; Erbeet al., in press!, amplitude informa-
tion is excluded from the analysis of frequency contou
Although this may be a disadvantage in some studies ana
ing recordings obtained in controlled environments, it w
prove beneficial in others where differences in record
equipment and in the composition of background noise
troduces spurious variability into the data. In the study
Sponget al. ~1993!, for example, it cannot be ruled out th
the neural network discriminated along differences in ba
ground noise composition rather than individual-specific
cal differences.

Although the ratings of similarity by human subjec
agreed on a fundamental level, this study suggests that
vidual human subjects perceive similarity of killer wha
calls differently. The ratings of similarity disagree betwe
subjects in the acoustic relationships of matrilineal grou
within the three clusters, as well as in the position of the
clusters with respect to each other. The subject who
never played a musical instrument had significantly hig
classification errors than the other two subjects, which m
suggest that the amount of musical exposure contribute
observer bias~see also Halpernet al., 1995; Baribeauet al.,
1996; Halpernet al., 1996!.

Comparing the ratings of acoustic similarity by the ne
ral network with those of the human subjects shows that b
ways of quantifying acoustic variation gave similar resu
The matrix correlation coefficients~Table IV! suggest that
the differences between ratings from individual subjects
greater than are differences between subject ratings and
neural network index. Since multiple independent neural n
works are trained on the same problem in each compari
the neural network index will give essentially identical r
sults given the same input data. The neural network there
represents an objective and repeatable means of meas
acoustic similarity, and allows the comparison of resu
across studies, species, and time.

Like discriminant function analysis~e.g., Job et al.,
1995!, or analysis of confusion frequencies~e.g., Miller and
Nicely, 1955; Loescheet al., 1992!, the neural network in-
dex of acoustic similarity is based on the premise that si
larity and discrimination are inversely related. All thre
methods rate patterns as similar if the analysis is unabl
tell them apart, and conversely consider patterns distinc
the analysis can consistently discriminate between th
This concept of similarity differs from that underlying oth
oc. Am., Vol. 105, No. 4, April 1999
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methods which use the geometric distance between two
terns as a measure of their similarity. Examples for the la
are cross correlation~e.g., Clarket al., 1987!, and cluster
analysis~e.g., McCowan, 1995!. Arguably the first concept
of similarity is more applicable to the study of communic
tion, since the information value of a signal is largely det
mined by how well a receiving animal can distinguish
from other signals~Beecher, 1989!.

The training procedure, which involves error bac
propagation to discriminate between different patterns, is
sentially a self-organizing process and does not depend
strictly linear relationships in the input data. For this reaso
neural network index will be able to detect and integra
differences between the input patterns that would be mis
by most conventional statistical analyses. Research into
logical neural systems suggests that these also operate
nonlinear and self-organizing way~Kelso, 1995!, which may
explain why a neural network based approach is often
best way to model biological signal processing tasks~Hunt,
1993; Erbeet al., in press!. The fact that the neural networ
index of acoustic similarity shows a significant correlati
with the association patterns of the different matriline
groups suggests that the index rates acoustic similarity
biologically meaningful way.

An index of acoustic variation based on neural netwo
analysis can be viewed as a hybrid between statistical
perceptive approaches of measuring acoustic similarity
combines the objectivity and repeatability of a strictly stat
tical approach with the self-organizing nonlinear nature
acoustic perception and biological signal processing,
therefore holds great potential in the study of human a
animal communication.

IV. CONCLUSIONS

This study demonstrates that autocovariance in the
quency domain is a useful way to extract contours of
pulse-repetition rate from noisy recordings of pulsed sign
This study also shows that discrimination of frequency co
tours using a back-propagation neural network is an effec
and repeatable way to measure the similarity of anim
sounds. The significant correlation between the neural
work based acoustic similarity index and a biological para
2506Deecke et al.: Neural network to compare killer whale dialects
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eter, the groups’ association patterns, suggests that the i
assesses acoustic similarity in a biologically meaning
way.
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